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It has been shown [I] that a polar dielectric produces charges on the 
surfaces perpendicular to the direction of propagation of a shock wave; 
a current passes in the circuit of Fig. 1, in which 1 is the fixed plate 
with guard ring, 2 is the moving plate, and 3 is the insulator, the di- 
rection of incidence being shown by the arrows. 

The initial current step is proportional to the dipole moment of the 
molecule, the number of dipoles per unit volume, and the plate area 
S, while it is inversely proportional to the thickness 10. The current is 
produced by rotation of the dipoles. 

The effect in, say,  lucite can be used in dynamic pressure trans- 
ducers. Here we assume that a double layer is formed behind the shock- 
wave front; the equivalent circuit is discussed. 

1. EQUIVALENT C1RCUIT OF A POLARIZATION TRANSDUCER 

We assume [1] that the wave polarizes the material, e . g . ,  by ro- 
tating the dipoles, but that the state persists only while a dipole is 
accelerated, with subsequent relaxation and return to an equilibrium 
state, which has altered thermodynamic parameters. A polarized layer 
thus exists around the front. 

A double layer moving at a constant speed in the circuit of Fig. 1 
is equivalent to an emf E0 determined by the thickness 5 of the layer, 
the degree of orientation of the dipoles, and so on. This source, in 
general, possesses an internal resistance Ri, since in the steady state 
it cannot produce a current greater than a value governed by the num- 
ber of dipoles oriented in unit time. 

Figure 2 shows the x - t  diagram, in which OA is the path of the 
plate (mass speed u), OB is the path of the shock wave (double layer, 
wave speed D), region 1 is uncompressed material (dielectric constant 
~j, bulk specific resistance Pl), and region 2 is compressed material 

(~z and Pz). 
We consider the case of 5 << 10; then for any time 0 -< t ~ 10/D 

the system of Fig. 1 may be interpreted via the circuit of Fig. 3a. 
Switch T is closed at t = 0 and opens at t = lo/D. The circuit param- 
eters with subscripts 1 and 2 relate respectively to regions 1 and 2 in 
Fig. 2 and are written for unit area in the form 

e I e23 
C i - -  4 ~ ( l o - - D t )  ' C2--  4zcDt ' R l : p l ( l o - - D t ) ,  

R2 = p2Dt (a : ~ - - ~ )  (1.1) 
D 

in which o is compression. The circuit of Fig. 3a is described by a 

second-order linear differential equation, which is difficult to solve. 
We consider two particular cases, in which R l is such that its shunt 

action on C t can be neglected. 
Case 1. The conductivity behind the shock front is small. We neg- 

lect the shunting action of R2 and pass from the equivalent circuit of 

Fig. 3a to that of Fig. 3b, in which 

-~ = B i  "@ ~ e '  C = C1C 2 (C I ~-  C2) - I  �9 (1.2) 

For this we have 

E o ~ iR -~- Vc, or I -k q~ = 1 

(T ~ VcEo -z, I ~ iREo -1) . (1.3) 

We differentiate the equation relating charge to voltage for a 

capacitor to get 

C d(p dC ) 
I = q~R ~ --~- @ ~ -  �9 (1.4) 

Here the reciprocal of the quantity in pazentheses can be considered 

as the effective resistance of the capacitor, which is denoted by Re, 

while Rc/R is denoted by 2g z. From (1.4), Re = dt/dC if ~ = constant. 
From gqs. (1.1) and (1.2), 

( oi) 1~=2] / -~  l o - - ( l - - z )  Dt z = ' ~  . (1.5) 
r  ( l  - ~) 

Substitution of Fxt. (1.4) into Eq. (1.3) and replacement of t by 
from Eq. (1.5) gives 

The general solution to this is 

= ~ exp (~2) [const 7 ]/~a-erf (~x)] . (1 "/) 

The value of ~t for t = 0 is 

~0 = 2 1/'~" l 0 [2RDel (t - -  z)l -'/2 (1.8) 

and a current step arises in the circuit, but the potential difference 
across the capacitor at this instant is V c ~ ~o = 0. This gives us the 
constant of integration in Eq. (1.7), so the particular solution of 
Eq. (1.6) is 

(p = Ix exp Ctt 2) ] / ~  [erf (~to) --  err (,u)] . (1 9) 

It is clear from Eqs. (1.5) and (1.8) that go and ~ are related by 

I z = ~ o  [ 1 - - ( t  - -  z) X] (X = D t l ( 1 )  (1.10) 

in which X is a dimensionless coordinate ranging from 0 to 1 as t varies, 

p running from Po to ~0z. 
Finally, from Eq. (1.3) we have 

I = t --  lz exp (~) ]/ '~'[erf (~o) -- erf (~)] . (1.11) 

Figure 4 shows I = f ( x )  as solid lines 1-5 for P0 of 0.5, 1, 2, 4, 

and 10 respectively. 
Case 2. The material behind the front is a good conductor, i . e . ,  

Rcz >> Rz and R = R i + Re >> Rz, 
Here again the processes in Fig. 2 are described by the circuit of 

Fig. 3b, and the equations remain the same, except that the capaci- 
tance C is the C l of Fig. 3a. This alters the form of 

~o = 210 V'~-(2RDe~) -'h (1.12) 

and Eq. (1.10) becomes 

ix ~ Izo (t - -  X) (X = Dtlo -1) . (1.13) 

The range in g is from g0 to 0 as X goes from 0 to 1; Fig. 4 (broken 
lines) shows the results from Eq, (1.11) for this case. 

In both cases the value Z = 0.5 has been used 

2. ANALYSIS OF RESULTS 

1) The shape of the I = / (X) curves in Fig. 2 is readily explained, 

since at t = 0 the following operations are performed simultaneously 
in the circuit of Fig. 3b: the source of emf is switched on and the 
effective resistance of C drops from R e = ~o to some finite value Re0. 
The emf produces a current step i = E0/R (I = 1), with subsequent 
decay governed by the relaxation time. Further, the change in Re 
produces a current step i = E0 (R ~ Rc)-lor in dimensionless terms, 

I = (t + 2,u~)-~ 
(I = (2ix2) -1 for 2 ~ > ~  i ) .  (2.1) 

The shape of the I(X) curves is determined by the joint action of 

these two factors. 
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If RC0 is sma l l  r e l a t i v e  to lo/D (it0 l a rge ) ,  the first factor  m a y  
be neg lec ted  to a first approx imat ion .  Then the in i t i a l  condi t ion  for 
Eq. (1.7) wi l l  be ~ = 1 at  t = 0, so 

I = t - -  ~x exp ~2) {~0-1 exp ( - -  ~02) + 

-}- ] f ~  [erf 0z0)-- erf ~)]} (2.2) 

We stop the series expansion of  erf(/a) a t  terms of the second order 
in ~ to ge t  

I = (Ns) -x 

which agrees with (2.1). 
2) We put the ra t io  of Re2 and R:z from Eq. (1,1) as 4~rt/Ose z. 

Case 1 corresponds to 4~rt/pzs 2 << 1, whi le  case 2 corresponds to 

4~rt/(Pzes) >> 1. We assume for ease  1 tha t  t = /0/D ~- 1 ~sec, whi le  

~2/41r is 0.5; then ps  >> 2 x lOS ohm �9 cm.  The condi t ion 4~rt/pzs z >> 1 

for the second ease  can  be  obeyed  only  for t > to, in whieh  to is some 

m i n i m u m  t ime,  which we m a y  reasonably  take  as the ~esolving t i m e  
of the apparatus (about 10 "s see), and so Pz << 2 x 104 ohm �9 cm is not  

covered by  solutions 1 and 2. 

3) Consider the reg ion  of g0 l a rge  for case 1. The c i r cu i t  current  

is g iven  by  gq.  (2.1). By spec i fy ing  the rat io  of the currents for two 

g iven  values of X (or t) on e a c h  of  the I(X) curves of Fig.  4, we ge t  

an expression for z: 

1 
z = ~I-(~ • 2 ~g-) (2.3) 

in which K is the rat io  of the current  a t  X = 1 to that  at  X = 0.5; K > 1 

for this range P0 (Fig. 4), wh i l e  z is posi t ive,  so Eq. (2.3) m a y  be put 

as 

= (2 I/K -- ~)-~. (2 4) 

4) The inverse relation of the initial current step to 10 [I] becomes 

an inverse-square relation for B0 large as (2.1) shows. 
5) The second formula of (2.1), put in the form i = E0dC/dt, is 

the basic formula for the capacity-transducer method [2]. 
This feature may be of value in determining ~s for dielectrics that 

do not produce an adequate E0, e.g., nonpolar dielectrics or polar 

ones subject to only small o (for instance, the lower limit of detection 
for lucite is given [i] as a pressure of 40 kbar). 

Naturally, an external source of emf is needed in these cases. 

6) The solution for the circuit of Fig. 3a can, in principle, give 

information on Pz, the specific bulk resistance behind the shock wave. 

Then e2 is r e ad i l y  found from Eq. (1.5).  In case  2 the parameters  

to be  de t e rmined  are E0 and R. Figure 4 shows tha t  K is (lx=0.a) -1, 
which Eq. (1.11) shows to be  un ique ly  r e l a t ed  to ~0, and the l a t t e r  

defines R v ia  Eq. (1.12). There  is no d i f f icu l ty  in f inding E0. 
7) This solut ion for substances wi th  o r i en ta t ion  po la r i za t ion  is 

cor rec t  also for substances wi th  ionic  or a tomic  polar iza t ion ,  s ince 

no assumption is m a d e  about the nature  of the ef fect  responsible  

for the emf .  
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