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A, G, Ivanov and E, Z. Novitskii

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 7, No. 5, pp. 104=107, 1966

It has been shown [1] that a polar dielectric produces charges on the
surfaces perpendicular to the direction of propagation of a shock wave;
a current passes in the circuit of Fig, 1, in which 1 is the fixed plate
with guard ring, 2 is the moving plate, and 3 is the insulator, the di-
rection of incidence being shown by the arrows.

The initial current step is proportional to the dipole moment of the
molecule, the number of dipoles per unit volume, and the plate area
S, while it is inversely proportional to the thickness ;. The current is
produced by rotation of the dipoles.

The effect in, say,- lucite can be used in dynamic pressure trans-
ducers. Here we assume that a double layer is formed behind the shock~
wave front; the equivalent circuit is discussed.

1. EQUIVALENT CIRCUIT OF A POLARIZATION TRANSDUCER

We assume [1] that the wave polarizes the material, e.g., by ro-
tating the dipoles, but that the state persists only while a dipole is
accelerated, with subsequent relaxation and return fo an equilibrium
state, which has altered thermodynamic parameters. A polarized layer
thus exists around the front.

A double layer moving at a constant speed in the circuit of Fig. 1
is equivalent to an emf E; determined by the thickness & of the layer,
the degree of orientation of the dipoles, and so on, This source, in
general, possesses an internal resistance R;, since in the steady state
it cannot produce a current greater than a value governed by the num-
ber of dipoles oriented in unit time. )

Figure 2 shows the x~t diagram, in which OA is the path of the
plate (mass speed u), OB is the path of the shock wave (double layer,
wave speed D), region 1 is uncompressed material (dielectric constant
&;, bulk specific resistance p3), and region 2 is compressed material
(€3 and pg). .

We consider the case of § << Ig; then for any time 0 = t = [,/D
the system of Fig, 1 may be interpreted via the circuit of Fig, 3a.
Switch T is closed at t = 0 and opens at t = lo/D. The circuit param~
eters with subscripts 1 and 2 relate respectively to regions 1 and 2 in
Fig, 2 and are written for unit area in the form

& €25
G=gapy s C=Tapr. fa=ple— Dy,
Dt i D
Ry = (o= D—u> 1.1

in which o is compression, The circuit of Fig. 3a is described by a
second -order linear differential equation, which is difficult to solve.
We consider two particular cases, in which Ry is such that its shunt
action on Gy can be neglected,

Case 1, The conductivity behind the shock front is small, We neg-
lect the shunting action of R, and pass from the equivalent circuit of
Fig. 3a to that of Fig. 3b, in which

R = R; -+ R,, C=Cil (Ci 4 C)7 (1.2)

For this we have

Ey=iR+V, o I+e=1
(@ =V Bt 1= iREY) . L.3)

We differentiate the equation relating charge to voltage for a
capacitor to get

dc
v @ +d—t>- (1.4)

Here the reciprocal of the quantity in parentheses can be considered
as the effective resistance of the capacitor, which is denoted by R,

while Ry /R is denoted by 2u®, From (1.4), Rg = dt/dC if ¢ = constant,
From Eqgs, (1.1) and (1.2),

o= b—(1—2) Dt &
B=2 VR (=) - 9
Substitution of Eq, (1.4) into Eq. (1.3) and replacement of t by u
from Eq. (1.5) gives
a9

1
—m—(Zp,-}-—p’)q):-—Zlu,- (L.6)

The general solution to this is
¢ = p exp (u?) [const — Vaerf ()] . 1.7
The value of p fort= 0 is
po =2 V'w Iy [2RDe; (1 — 2)] " (1.8

and a current step arises in the circuit, but the potential difference
across the capacitor at this instant is V, ~ ¢ = 0. This gives us the
constant of integration in Eq. (1,7), so the particular solution of

Eq. (1.6) is
¢ = pexp ) V7 lerf () — erf ()] . (1.9)
It is clear from Egs. (1.5) and (1.8) that py and [ are related by

p=po 1 — (1 —2) X] (X = Dty (1.10)

in which X is a dimensionless coordinate ranging from 0 1o 1 as t varies,
u running from g to LoZ.
Finally, from Eq. (1.3) we have

I=1—pexp) Valef @) —ef@l. (L1

Figure 4 shows 1= F(X) as solid lines 15 for pg of 0.5, 1, 2, 4,
and 10 respectively.

Case 2. The material behind the front is a good conductor, i.e.,
Rea Ry and R=Ri +Re > Ry

Here again the processes in Fig, 2 are described by the circuit of
Fig. 3b,and the equations remain the same, except that the capaci-
tance G is the Cy of Fig. 3a. This alters the form of

to = 21, Vi 2RDe) ™ (1.19)
and Eq. (1.10) becomes
u=p (1 — X) (X = Dtiy™). (1.13)

The range in g is from po to 0 as X goes from 0 to 1; Fig, 4 (broken
lines) shows the results from Eq, (1.11) for this case.
In both cases the value Z = 0.5 has been used.

2, ANALYSIS OF RESULTS

1) The shape of the 1= f(X) curves in Fig, 2 is readily explained,
since at t = 0 the following operations are performed simultanecusly
in the circuit of Fig, 3b: the source of emf is switched on and the
effective resistance of C drops from R, = « to some finite value Rqg.
The emf produces a current step i = Eq /R (1= 1), with subsequent
decay governed by the relaxation time, Further, the change inR¢
produces a current step i = E, (R + R )~lor in dimensionless terms,

I=(1+ 2w
(I = (2u®)™ for 2u*>1). (2,1)

The shape of the 1(X) curves is detetmined by the joint action of
these two factors,
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If RCy is small relative to 1/D (pg large), the first factor may
be neglected to a first approximation, Then the initial condition for
Eq. (L.7) willbe ¢ =1 att =0, so

I=1 —p exp (u2) {uy" exp (— p?) +
+ Vi ferf (ue) — exf )1} . (2.2)

We stop the series expansion of erf(u) at terms of the second order
ink to get

I = (2w

which agrees with (2.1),

2) We put the ratio of Re, and R, from Eq. (1.1) as 47t/p,€,.

Case 1 corresponds to 4mt/p,e, <« 1, while case 2 corresponds to
4mt/(pzey) > 1, We assume for case 1 that t = [o/D ~ 1 usec, while
&2/4m is 0.5; then p, > 2 X 10° ohm + cm. The condition 4rtfp,e, > 1
for the second case can be obeyed only for t > tq, in which t, is some
minimum time, which we may reasonably take as the resolving time
of the apparatus (about 107% sec), and so p; <« 2 x 104 ohm + cm is not
covered by solutions 1 and 2,

3) Consider the region of u, large for case 1, The circuit current
is given by Eq. (2.1). By specifying the ratio of the currents for two
given values of X (or t) on each of the I(X) curves of Fig., 4, we get
an expression for z:

1 _
i= g (1 £ 2 VK) (2.3)

in which K is the ratio of the current at X = L to thatat X = 0,5; K > 1
for this range po (Fig. 4), while z is positive, so Eq. (2.3) may be put
as

=2 VE—1?T. (2-4)

4) The inverse relation of the initial current step to I, {1] becomes
an inverse-square relation for y, large as (2.1) shows.

5) The second formula of (2,1), put in the form i = EodC/dt, is
the basic formula for the capacity-wansducer method [2].

This feature may be of value in determining &, for dielectrics that
do not produce an adequate Eq, e.g., nonpolar dielectrics or polar
ones subject to only small ¢ (for instance, the lower limit of detection
for lucite is given [1] as a pressure of 40 kbar),

Naturally, an external source of emf is needed in these cases,

6) The solution for the circuit of Fig. 3a can, in principle, give
information on pg, the specific bulk resistance behind the shock wave,

Then €, is readily found from Eq. (1.5). In case 2 the parameters
to be determined are Eq and R, Figure 4 shows that K is (/y_, )7,
which Eq. (1,11} shows to be uniquely related o jy, and the latter
defines R via Eq. (1.12). There is no difficulty in finding E,.

7) This solution for substances with orientation polarization is
correct also for substances with ionic or atomic polarization, since
no assumption is made about the nature of the effect responsible
for the emf,
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